# Real Number Space
# Real Number System
- 定义实数系统的两种方法
方法1 自然数→整数→有理数→实数
Approach 1. Start with the set of natural numbers , construct the set of all integers , and next, the set of rationals and then the set of of real numbers either as the set of all Cauchy sequences of rationals or as Dedekind cuts. The step going from to vis Cauchy sequences is also available for completing any incomplete metric space.
方法2 域(field)定义:满足结构(algebraic)公理、序(ordering)公理、完备性(completeness)公理
Approach 2. Define the set of real numbers, , as a set that satisfies three set of axioms. The first set is algebraic involving addtion and multiplication. The second set is on ordering that, with the first, makes an ordered field (Royden 1988). The third set is a single axiom known as the completeness axiom. Thus is defined as complete ordered field.
- 此处采用方法 2 进行讨论
# Algebraic Axioms
# Additive Group
- 满足以下 4 个群公理的具有运算
+
(称为 group law)的集合 称为加群 (additive group)
axiom | explanation |
---|---|
Closure(封闭性) | . |
Associativiy(结合律) | . |
Identity element(单位元) | . is unique, and thus one speaks of the identity element. |
Additive Inverse(逆元) | . |
- 进一步,满足性质: 的加群 称为阿贝尔 (Abelian) 加群或交换 (commutative) 加群。反之则称为非阿贝尔 (non-Abelian) 加群或非交换 (non-commutative) 加群。
# An example of additive group
- 注意此处 式表明两点:第一,在加群 中, 即为其本身的逆元;第二,保证了加群 的封闭性。
# Multiplicative Group
- 满足以下 4 个群公理的具有运算
×
(称为 group law)的集合 称为乘群 (multiplicative group)
axiom | explanation |
---|---|
Closure(封闭性) | . |
Associativiy(结合律) | . |
Identity element(单位元 / 幺元) | . is unique, and thus one speaks of the identity element. |
Additive Inverse(逆元) | . |
- 进一步,满足性质: 的乘群 称为阿贝尔 (Abelian) 乘群或交换 (commutative) 乘群。反之则称为非阿贝尔 (non-Abelian) 乘群或非交换 (non-commutative) 乘群。
# An example of multiplicative group
- 注意此处 不再是乘群 的单位元; 既是单位元(幺元),也是逆元。
# Group
一般群的定义
# Ring (with unity)
- 满足以下 3 组环公理的具有两个二元运算
×
、+
的集合 称为环(幺环)(Ring with unity)
Abelian group under +(阿贝尔加群) | monoid under ×(乘幺半群) | × is distributive with respect to +(乘法分配律) |
---|---|---|
(1.1) Commutativity(加法交换律) | (2.1) Closure(乘法封闭性) | (3.1) Left Distributivity(乘法左分配律) |
(1.2) Associativity(加法结合律) | (2.2) Associativity(乘法结合律) | (3.2) Right Distributivity(乘法右分配律) |
(1.3) Additive identity(存在加法单位元) | (2.3) Multiplicative Identity(存在乘法幺元) | / |
(1.4) Additive inverse(存在加法逆元) | / | / |
- (1.1) 隐含了加法封闭性 (Closure)。
Monoid(幺半群)
A set equipped with a binary operation , which we will denote , is a monoid if it satisfies the following two axioms:
Associativity
For all , and in , the equation holds.
Identity element
There exists an element in such that for every element in , the equations and hold.
In other words, a monoid is a semigroup with an identity element. It can also be thought of as a magma with associativity and identity. The identity element of a monoid is unique. For this reason the identity is regarded as a constant, 0-ary (or nullary) operation. The monoid therefore is characterized by specification of the triple .
A monoid in which each element has an inverse is a group. (From Wikipedia: Monoid)
# Abelian Ring
- 满足以下 3 组环公理的具有两个二元运算
×
、+
的集合 称为阿贝尔环(交换环)(Abelian Ring = Commutative Ring)
Abelian group under +(阿贝尔加群) | Abelian monoid under ×(阿贝尔乘幺半群) | × is distributive with respect to +(乘法分配律) |
---|---|---|
(1.1) Commutativity(加法交换律) | (2.1) Commutativity(乘法交换律) | (3.1) Left Distributivity(乘法左分配律) |
(1.2) Associativity(加法结合律) | (2.2) Associativity(乘法结合律) | (3.2) Right Distributivity(乘法右分配律) |
(1.3) Additive identity(存在加法单位元) | (2.3) Multiplicative Identity(存在乘法幺元) | / |
(1.4) Additive inverse(存在加法逆元) | / | / |
- (1.1) 和 (2.1) 分别隐含了加法封闭性与乘法封闭性。
# Field
- 满足以下 3 组环公理的具有两个二元运算
×
、+
的集合 称为域 (Field)
Abelian group under +(阿贝尔加群) | Abelian group under ×(阿贝尔乘群) | × is distributive with respect to +(乘法分配律) |
---|---|---|
(1.1) Commutativity(加法交换律) | (2.1) Commutativity(乘法交换律) | (3.1) Left Distributivity(乘法左分配律) |
(1.2) Associativity(加法结合律) | (2.2) Associativity(乘法结合律) | (3.2) Right Distributivity(乘法右分配律) |
(1.3) Additive identity(存在加法单位元) | (2.3) Multiplicative Identity(存在乘法幺元) | / |
(1.4) Additive inverse(存在加法逆元) | (2.4) Multiplicative Inverse(存在乘法逆元) | / |
# Ring to Field
- 幺环 (Ring with unity or identity): 对一个环 , 且
- 整环 (integral domain): 对一个交换幺环 (commutative ring with identity) ,
- 即无零因子(零因子:,如由方阵组成的环中,所有不可逆矩阵都是零因子)
- 除环 (division ring): 对一个幺环 ,每一个非零元素都是一个单位 (unit)
- 即
- 交换除环即为域
# Relations between group, ring, field
# Vector Space
满足以下 8 条公理的具有两种运算的在域 上的集合 称为向量空间(线性空间)(Linear Space = Vector Space)
两种运算
- 向量加法
+
(vector addition or simply addition): . - 标乘(数乘)
·
(scarlar multiplication): .
- 向量加法
两种运算皆封闭
8 条公理
向量加法公理 | 标乘公理 |
---|---|
(1) Commutativity(加法交换律) | (5) Multiplicative Identity in (存在数乘幺元) |
(2) Associativity(加法结合律) | (6) Compatibility(数乘一致性) |
(3) Additive identity(存在加法单位元) | (7) Distributivity I (关于向量加法的数乘分配律) |
(4) Additive inverse(存在加法逆元) | (8) Distributivity II (关于域加法的数乘分配律) |
- (6) Compatibility of Scalar Multiplication with Field Multiplication
- (7) Distributivity of Scalar Multiplication with respect to Vector Addition
- (8) Distributivity of Scalar Multiplication with respect to Field Addition
# Order Axioms
严格正数集 (the set of strictly positive numbers) 是实数集 的子集,满足以下 3 个命题:
- (1) For any real number in , exactly one of the following holds: or or .
- .
- (2) If and in , .
- (3) If and in , .
- (1) For any real number in , exactly one of the following holds: or or .
这表明了 是一个正锥
- 先有正锥,后有序关系
进而可以定义 “小于” (Less Than Relation) 如下:
- to mean ()
- to mean or ()
- to mean ()
- to mean or ()
“大于”: 当且仅当 ; 当且仅当
# Ordered Field
- 具有(1)两种运算 , (2)对应零元 , (3)满足对应版本序公理 (1)-(2)-(3) 的子集 的域,称为有序域 (ordered field)
- 即:能定义正锥的域是有序域
- 例如: 和 都是有序域,但 不是(无法定义正锥)
# Completeness Axioms
- 7 条实数的完备性 (Completeness) 公理(定理),它们互相等价
axiom |
---|
Dedekind - Cantor Axiom of Continuity of Real Line(实直线连续性公理) |
Theorem of Supremum and Infimum(上下确界存在定理) |
Theorem of Limit of Monotone Sequence(单调序列极限定理) |
Cantor Nested Intervals Theorem(闭区间套定理) |
Bolzano - Weierstrass Theorem(聚点定理 / 致密性定理) |
Cauchy Convergence Criterion(柯西收敛准则) |
Heine - Borel Theorem(有限覆盖定理) |
# Dedekind - Cantor Axiom of Continuity of Real Line
# Dedekind Completeness Axiom
- 设 与 是具有以下性质的非空实数集:
- (1) 如果,那么;
- (2) 每个实数要么在 中,要么在 中(即:).
- 那么存在唯一的实数 使得:
- (1) 若,则,并且
- (2) 若,则.
- 戴德金完备性公理表明了在实数中没有 “孔”。
# Dedkind Cut
- 根据定义 (2), 要么在 中,要么在 中,因此:
- 若,则;
- 若,则.
- 这样的集合对 称为戴德金分割 (Dedkind Cut)
# Dedekind - Cantor Axiom of Continuity of Real Line
- 假设集合对 是一个关于 的戴德金分割,并具有性质:
- 如果,那么.
- 则:要么 中存在最大值,要么 中存在最小值:
- 若 中存在最大值,则;
- 若 中存在最小值,则.
# Theorem of Supremum and Infimum
# Supremum and Infimum
- 为一个实数的集合,若,则称 是 的一个上界 (upper bound);
- 设 是 的一个上界,若, 为 的任一上界,则称 为 的上确界 (l.u.b or supremum or sup).
- 为一个实数的集合,若,则称 是 的一个下界 (lower bound);
- 设 是 的一个上界,若, 为 的任一上界,则称 为 的下确界 (g.l.b or infimum or inf).
# Supremum and Infimum Completeness Axiom
- 上确界定理(上确界完备性公理):设 为一个有上界的非空实数集,则 在 中有一个上确界。
- 下确界定理(下确界完备性公理):设 为一个有下界的非空实数集,则 在 中有一个上确界。
Proof: Dedekind - Cantor Axiom → Theorem of Supremum
Proof: Theorem of Supremum → Dedekind - Cantor Axiom
Proof: Dedekind - Cantor Axiom → Theorem of Infimum
Proof: Theorem of Infimum → Dedekind - Cantor Axiom
# Proposition on Supremum and Infimum
上确界:
- 定义:设 是一个非空实数集,则 当且仅当
- (1) ;
- (2) , 为 的任意上界.
- 命题:设 是一个非空实数集,则 当且仅当
- (1) ;
- (2') .
Proof
下确界:
- 定义:设 是一个非空实数集,则 当且仅当
- (1) ;
- (2) , 为 的任意下界.
- 命题:设 是一个非空实数集,则 当且仅当
- (1) ;
- (2') .
Proof
# Theorem of Limit of Monotone Sequence
# Bounded Monotone Sequence
- 有界 (bounded) 序列:A sequence is bounded if the set of terms from the sequence is bounded.
- 单调 (monotone) 序列:A sequence is
- (1) increasing if ;
- (2) decreasing if ;
- (3) strictly increasing if ;
- (4) strictly decreasing if ;
- A sequence is monotone if it is either increasing of decreasing.
# Theorem on Limit of Bounded Monotone Sequence
- Theorem: Every bounded monotone sequence in has a limit in .(单调有界数列必有极限)
- Increasing Sequence: Suppose is an increasing sequence of real numbers which is bounded above. Then there exists a limit of , or exists.
- Decreasing Sequence: Suppose is a decreasing sequence of real numbers which is bounded below. Then there exists a limit of , or exists.
Proof: Theorem of Limit of Increasing Sequence
Proof: Theorem of Limit of Decreasing Sequence
# Cantor Nested Intervals Theorem
- Definition: is a sequence of closed bounded nested intervals(闭区间套)if .
- 定理 1:若 是一个闭区间套,则存在一个实数,使得.
- 定理 2:若 是一个闭区间套,则存在一个实数,使得.
- 闭区间套定理:若 是一个闭区间套,则存在两个实数,,使得.
- 闭区间套定理:若 是一个闭区间套,且,则.
Proof: Theorem 1
Proof: Theorem 2
Proof: Nested Intervals Theorem
# Bolzano - Weierstrass Theorem
# Bolzano Theorem
- Theorem: Each bounded sequence in has a convergent subsequence.(有界数列必有收敛子列)
- Theorem: Each bounded sequence in has a limit point.(有界数列必有极限点)
Proof: Bolzano Theorem
# Weierstrass Theorem on Accumulation Point
- Accumulation Point(聚点):For all , it exists infinite such that , thus is an accumulation point of sequence .
- Theorem: Every bounded infinite set in has an accumulation point.
Proof: Weierstrass Theorem
# Cauchy Convergence Criterion
- 柯西序列 (Cauchy Sequence): 是一个柯西序列,当:.
- 柯西收敛准则:序列 是收敛 (convergent) 的当且仅当其为一个柯西序列。
Proof: Necessity
Proof: Sufficiency
# Heine - Borel Theorem
- Definition: A collection of open sets is an open covering(开覆盖) of a set if every point in is contained in a set belonging to : that is, .
- Theorem: If is an open covering of a closed and bounded subset of the real line; then has an open covering consisting of finite many open sets belonging to .
Proof
# Propositions of Continuous Funtion on Closed Interval
- Theorem on Boundedness: If function is continuous on a bounded closed interval, then it is bounded.
- Hint: Bolzano-Weierstrass Theorem
- Hint: Heine-Borel Theorem on Finite Coverings
- Theorem on Maximum and Minimum Values: If function is continuous on a bounded closed interval, then is has (reaches) maximum and minimum values.
- Hint: Theorem of Supremum and Infimum + Bolzano-Weierstrass Theorem
- Theorem on Solution: If function is continuous on a bounded closed interval , and , then there exists a solution on to equation .
- Hint: Cantor Nested Intervals Theorem
- Theorem on Inverse Function: If function is continuous and strictly monotonic increasing (or decreasing) on a bounded closed interval , and and , then there exists a continous and strictly monotonic increasing (or decreasing) inverse function on bounded closed interval (or ).
- Cantor Theorem on Uniform Continuity: If function is continuous on a bounded closed interval, then it is uniformly continuous.
- Hint: Bolzano-Weierstrass Theorem
- Hint: Heine-Borel Theorem on Finite Coverings
!! 参考证明见:陈继修等《数学分析(上册)》!!
# N-dimensional Real Number Space
- Definition: -dimensional Euclidean space, or -dimensional continuum, is the set of all number tuple of real numbers.
# Distance - Metric
- For any two points for , define distance between the two points:
- .
# Propositions of Distance
- Positivity: . if and only if .
- Symmetry: .
- Triangle Inequality: .
- is a countinuous function on : .
# Norm
- For any two points for , define the norm as:
- .
# Propositions of Norm
- Positivity: . if and only if .
- Symmetry: .
- Triangle Inequality: .