# Real Number Space

# Real Number System

  • 定义实数系统的两种方法
方法1 自然数→整数→有理数→实数

Approach 1. Start with the set of natural numbers N\mathbb{N}, construct the set Z\mathbb{Z} of all integers (N{0}(N))(\mathbb{N}\cup\{0\}\cup(-\mathbb{N})), and next, the set Q\mathbb{Q} of rationals and then the set of R\mathbb{R} of real numbers either as the set of all Cauchy sequences of rationals or as Dedekind cuts. The step going from Q\mathbb{Q} to R\mathbb{R} vis Cauchy sequences is also available for completing any incomplete metric space.

方法2 域(field)定义:满足结构(algebraic)公理、序(ordering)公理、完备性(completeness)公理

Approach 2. Define the set of real numbers, R\mathbb{R}, as a set that satisfies three set of axioms. The first set is algebraic involving addtion and multiplication. The second set is on ordering that, with the first, makes R\mathbb{R} an ordered field (Royden 1988). The third set is a single axiom known as the completeness axiom. Thus R\mathbb{R} is defined as complete ordered field.

  • 此处采用方法 2 进行讨论

# Algebraic Axioms

# Additive Group

  • 满足以下 4 个群公理的具有运算 + (称为 group law)的集合GG 称为加群 (additive group)
axiomexplanation
Closure(封闭性)a1,a2G,a1+a2G\forall a_1,a_2\in G,a_1+a_2\in G.
Associativiy(结合律)a1,a2,a3G,(a1+a2)+a3=a1+(a2+a3)\forall a_1,a_2,a_3\in G,(a_1+a_2)+a_3=a_1+(a_2+a_3).
Identity element(单位元)aG,0G,s.t.0+a=a+0=a\forall a\in G,\exists 0\in G,\mathrm{s.t.}\ 0+a=a+0=a. 00 is unique, and thus one speaks of the identity element.
Additive Inverse(逆元)aG,aG,s.t.(a)+a=a+(a)=0\forall a\in G,\exists -a\in G,\mathrm{s.t.}\ (-a)+a=a+(-a)=0.
  • 进一步,满足性质:a1,a2G,a1+a2=a2+a1\forall a_1,a_2\in G, a_1+a_2=a_2+a_1 的加群(G,+)(G,+) 称为阿贝尔 (Abelian) 加群交换 (commutative) 加群。反之则称为非阿贝尔 (non-Abelian) 加群非交换 (non-commutative) 加群

# An example of additive group

G={0,10+0=0,0+1=1,1+0=1,1+1=0}G=\{0,1\|0+0=0,0+1=1,1+0=1,1+1=0\}

  • 注意此处1+1=01+1=0 式表明两点:第一,在加群(G,+)(G,+) 中,11 即为其本身的逆元;第二,保证了加群(G,+)(G,+) 的封闭性。

# Multiplicative Group

  • 满足以下 4 个群公理的具有运算 × (称为 group law)的集合GG 称为乘群 (multiplicative group)
axiomexplanation
Closure(封闭性)a1,a2G,a1×a2G\forall a_1,a_2\in G,a_1\times a_2\in G.
Associativiy(结合律)a1,a2,a3G,(a1×a2)×a3=a1×(a2×a3)\forall a_1,a_2,a_3\in{G},(a_1\times a_2)\times a_3=a_1\times (a_2\times a_3).
Identity element(单位元 / 幺元aG,1G,s.t.1×a=a×1=a\forall a\in{G},\exists 1\in{G},\mathrm{s.t.}\ 1\times a=a\times 1=a. 11 is unique, and thus one speaks of the identity element.
Additive Inverse(逆元)aG,a1G,s.t.a1×a=a×a1=1\forall a\in{G},\exists a^{-1}\in{G},\mathrm{s.t.}\ a^{-1}\times a=a\times a^{-1}=1.
  • 进一步,满足性质:a1,a2G,a1×a2=a2×a1\forall a_1,a_2\in{G}, a_1\times a_2=a_2\times a_1 的乘群(G,×)({G},\times ) 称为阿贝尔 (Abelian) 乘群交换 (commutative) 乘群。反之则称为非阿贝尔 (non-Abelian) 乘群非交换 (non-commutative) 乘群

# An example of multiplicative group

G={0,10×0=0,0×1=1,1×0=0,1×1=1}{G}=\{0,1\|0\times 0=0,0\times 1=1,1\times 0=0,1\times 1=1\}

  • 注意此处00 不再是乘群(G,×)({G},\times) 的单位元;11 既是单位元(幺元),也是逆元。

# Group

一般群的定义

# Ring (with unity)

  • 满足以下 3 组环公理的具有两个二元运算 ×+ 的集合R{R} 称为环(幺环)(Ring with unity)
Abelian group under +(阿贝尔加群)monoid under ×(乘幺半群)× is distributive with respect to +(乘法分配律)
(1.1) Commutativity(加法交换律)(2.1) Closure(乘法封闭性)(3.1) Left Distributivity(乘法左分配律)
(1.2) Associativity(加法结合律)(2.2) Associativity(乘法结合律)(3.2) Right Distributivity(乘法右分配律)
(1.3) Additive identity(存在加法单位元)(2.3) Multiplicative Identity(存在乘法幺元)/
(1.4) Additive inverse(存在加法逆元)//
  • (1.1) 隐含了加法封闭性 (Closure)。
Monoid(幺半群)

A set S{S} equipped with a binary operation S×SS{S}\times{S} \to{S}, which we will denote \cdot, is a monoid if it satisfies the following two axioms:
Associativity
For all aa, bb and cc in S{S}, the equation (ab)c=a(bc)(a \cdot b) \cdot c = a \cdot (b \cdot c) holds.
Identity element
There exists an element ee in S{S} such that for every element aa in S{S}, the equations ea=ae \cdot a = a and ae=aa \cdot e = a hold.
In other words, a monoid is a semigroup with an identity element. It can also be thought of as a magma with associativity and identity. The identity element of a monoid is unique. For this reason the identity is regarded as a constant, i.e.\mathrm{i.e.} 0-ary (or nullary) operation. The monoid therefore is characterized by specification of the triple (S,,e)({S}, \cdot , e).
A monoid in which each element has an inverse is a group. (From Wikipedia: Monoid)

# Abelian Ring

  • 满足以下 3 组环公理的具有两个二元运算 ×+ 的集合R{R} 称为阿贝尔环(交换环)(Abelian Ring = Commutative Ring)
Abelian group under +(阿贝尔加群)Abelian monoid under ×(阿贝尔乘幺半群)× is distributive with respect to +(乘法分配律)
(1.1) Commutativity(加法交换律)(2.1) Commutativity(乘法交换律)(3.1) Left Distributivity(乘法左分配律)
(1.2) Associativity(加法结合律)(2.2) Associativity(乘法结合律)(3.2) Right Distributivity(乘法右分配律)
(1.3) Additive identity(存在加法单位元)(2.3) Multiplicative Identity(存在乘法幺元)/
(1.4) Additive inverse(存在加法逆元)//
  • (1.1) 和 (2.1) 分别隐含了加法封闭性与乘法封闭性。

# Field

  • 满足以下 3 组环公理的具有两个二元运算 ×+ 的集合F{F} 称为 (Field)
Abelian group under +(阿贝尔加群)Abelian group under ×(阿贝尔乘群)× is distributive with respect to +(乘法分配律)
(1.1) Commutativity(加法交换律)(2.1) Commutativity(乘法交换律)(3.1) Left Distributivity(乘法左分配律)
(1.2) Associativity(加法结合律)(2.2) Associativity(乘法结合律)(3.2) Right Distributivity(乘法右分配律)
(1.3) Additive identity(存在加法单位元)(2.3) Multiplicative Identity(存在乘法幺元)/
(1.4) Additive inverse(存在加法逆元)(2.4) Multiplicative Inverse(存在乘法逆元)/

# Ring to Field

  • 幺环 (Ring with unity or identity): 对一个环 R{R}, 1R,s.t.10\exist 1\in {R},\mathrm{s.t.}\ 1\neq 0aR,1×a=a×1=a\forall a\in {R}, 1\times a=a\times 1=a
  • 整环 (integral domain): 对一个交换幺环 (commutative ring with identity) R{R}, a1,a2R,s.t.a1×a2=0,a1=0ora2=0\forall a_1,a_2\in{R},\mathrm{s.t.}\ a_1\times a_2=0, a_1=0\ \mathrm{or}\ a_2=0
    • 无零因子(零因子:e0R,s.t.aR,a×e=0\exist e\neq 0\in{R},\mathrm{s.t.}\ \forall a\in{R},a\times e=0,如由方阵组成的环中,所有不可逆矩阵都是零因子)
  • 除环 (division ring): 对一个幺环 R{R},每一个非零元素都是一个单位 (unit)
    • a0R,!a1,s.t.a1×a=a×a1=1\forall a\neq 0\in {R},\exist !a^{-1},\mathrm{s.t.}\ a^{-1}\times a=a\times a^{-1}=1
  • 交换除环即为

Rings:ZQRCFields:QRCRings:\mathbb{Z}\subseteq \mathbb{Q}\subseteq \mathbb{R}\subseteq \mathbb{C}\\ Fields:\mathbb{Q}\subseteq \mathbb{R}\subseteq \mathbb{C}

# Relations between group, ring, field

# Vector Space

  • 满足以下 8 条公理的具有两种运算的在域F{F} 上的集合V{V} 称为向量空间(线性空间)(Linear Space = Vector Space)

  • 两种运算

    • 向量加法 + (vector addition or simply addition): V+VV{V}+{V}\to{V}.
    • 标乘(数乘) · (scarlar multiplication): FVV{F}\cdot{V}\to{V}.
  • 两种运算皆封闭

  • 8 条公理

向量加法公理标乘公理
(1) Commutativity(加法交换律)(5) Multiplicative Identity in F{F}(存在数乘幺元)
(2) Associativity(加法结合律)(6) Compatibility(数乘一致性)
(3) Additive identity(存在加法单位元)(7) Distributivity I (关于向量加法的数乘分配律)
(4) Additive inverse(存在加法逆元)(8) Distributivity II (关于域加法的数乘分配律)
  • (6) Compatibility of Scalar Multiplication with Field Multiplication
    • a1,a2F,vV,a1(a2v)=(a1×a2)v\forall a_1,a_2\in {F},\forall v\in {V}, a_1\cdot (a_2\cdot v)=(a_1\times a_2)\cdot v
  • (7) Distributivity of Scalar Multiplication with respect to Vector Addition
    • aF,v1,v2V,a(v1+v2)=av1+av2\forall a\in {F},\forall v_1,v_2\in {V}, a\cdot (v_1+v_2)=a\cdot v_1+a\cdot v_2
  • (8) Distributivity of Scalar Multiplication with respect to Field Addition
    • a1,a2F,vV,(a1+a2)v=a1v+a2v\forall a_1,a_2\in {F},\forall v\in {V}, (a_1+a_2)\cdot v=a_1\cdot v+ a_2\cdot v

# Order Axioms

  • 严格正数集 (the set of strictly positive numbers) P\mathbb{P} 是实数集R\mathbb{R} 的子集,满足以下 3 个命题:

    • (1) For any real number aa in R\mathbb{R}, exactly one of the following holds: a=0a=0 or aPa\in\mathbb{P} or aP-a\in\mathbb{P}.
      • P=R+{0}=R++\mathbb{P}=\mathbb{R}_{+}\setminus\{0\}=\mathbb{R}_{++}.
    • (2) If a1a_1 and a2a_2 in P\mathbb{P}, a1+a2a_1+a_2\in P\mathbb{P}.
    • (3) If a1a_1 and a2a_2 in P\mathbb{P}, a1a2a_1\cdot a_2\in P\mathbb{P}.
  • 这表明了P\mathbb{P} 是一个正锥

    • 先有正锥P\mathbb{P},后有序关系
  • 进而可以定义 “小于” (Less Than Relation) 如下:

    • a1<a2a_1<a_2 to mean a2a1Pa_2-a_1\in\mathbb{P} (a2a1R++a_2-a_1\in\mathbb{R}_{++})
    • a1a2a_1\leq a_2 to mean a2a1Pa_2-a_1\in\mathbb{P} or a1=a2a_1=a_2 (a2a1R+a_2-a_1\in\mathbb{R}_{+})
    • a1>a2a_1>a_2 to mean a1a2Pa_1-a_2\in\mathbb{P} (a1a2R++a_1-a_2\in\mathbb{R}_{++})
    • a1a2a_1\geq a_2 to mean a1a2Pa_1-a_2\in\mathbb{P} or a1=a2a_1=a_2 (a1a2R+a_1-a_2\in\mathbb{R}_{+})
  • “大于”:a1<a2a_1<a_2 当且仅当 a2>a1a_2>a_1a1a2a_1\leq a_2 当且仅当 a2a1a_2\geq a_1

# Ordered Field

  • 具有(1)两种运算 \oplus, \otimes(2)对应零元 00_\oplus, 00_\otimes(3)满足对应版本序公理 (1)-(2)-(3) 的子集P{P} 的域F{F},称为有序域 (ordered field)
  • 即:能定义正锥的域是有序域
    • 例如:Q\mathbb{Q}R\mathbb{R} 都是有序域,但 C\mathbb{C} 不是(无法定义正锥)

# Completeness Axioms

  • 7 条实数的完备性 (Completeness) 公理(定理),它们互相等价
axiom
Dedekind - Cantor Axiom of Continuity of Real Line(实直线连续性公理)
Theorem of Supremum and Infimum(上下确界存在定理)
Theorem of Limit of Monotone Sequence(单调序列极限定理)
Cantor Nested Intervals Theorem(闭区间套定理)
Bolzano - Weierstrass Theorem(聚点定理 / 致密性定理)
Cauchy Convergence Criterion(柯西收敛准则)
Heine - Borel Theorem(有限覆盖定理)

# Dedekind - Cantor Axiom of Continuity of Real Line

# Dedekind Completeness Axiom

  • A{A}B{B} 是具有以下性质的非空实数集:
    • (1) 如果aA,bBa\in {A},b\in {B},那么a<ba<b;
    • (2) 每个实数要么在A{A} 中,要么在B{B} 中(即:AB=R{A}\cup {B}=\mathbb{R}).
  • 那么存在唯一的实数cc 使得:
    • (1) 若a<ca<c,则aAa\in {A},并且
    • (2) 若b>cb>c,则bBb\in {B}.

  • 戴德金完备性公理表明了在实数中没有 “孔”

# Dedkind Cut

  • 根据定义 (2),cc 要么在A{A} 中,要么在B{B} 中,因此:
    • cAc\in {A},则A=(,c],B=(c,){A}=(-\infty,c], {B}=(c,\infty);
    • cBc\in {B},则A=(,c),B=[c,){A}=(-\infty,c), {B}=[c,\infty).
  • 这样的集合对{A,B}\{ {A}, {B}\} 称为戴德金分割 (Dedkind Cut)

# Dedekind - Cantor Axiom of Continuity of Real Line

  • 假设集合对(A,Ac)( {A}, {A}^c) 是一个关于R\mathbb{R} 的戴德金分割,并具有性质:
    • 如果aA,bAca\in {A},b\in {A}^c,那么a<ba<b.
  • 则:要么AA 中存在最大值,要么Ac{A}^c 中存在最小值:
    • A{A} 中存在最大值cc,则A=(,c],Ac=(c,){A}=(-\infty,c], {A}^c=(c,\infty);
    • Ac{A}^c 中存在最小值cc,则A=(,c),Ac=[c,){A}=(-\infty,c), {A}^c=[c,\infty).

# Theorem of Supremum and Infimum

# Supremum and Infimum

  • S{S} 为一个实数的集合,若xS,xu\forall x\in S,x\leq u,则称uuS{S} 的一个上界 (upper bound);
    • bbS{S} 的一个上界,若bub\leq u, uuS{S} 的任一上界,则称bbS{S}上确界 (l.u.b or supremum or sup).
  • S{S} 为一个实数的集合,若xS,xd\forall x\in S,x\geq d,则称ddS{S} 的一个下界 (lower bound);
    • llS{S} 的一个上界,若ldl\geq d, ddS{S} 的任一上界,则称llS{S}下确界 (g.l.b or infimum or inf).

# Supremum and Infimum Completeness Axiom

  • 上确界定理(上确界完备性公理):设S{S} 为一个有上界的非空实数集,则S{S}R\mathbb{R} 中有一个上确界。
  • 下确界定理(下确界完备性公理):设S{S} 为一个有下界的非空实数集,则S{S}R\mathbb{R} 中有一个上确界。
Proof: Dedekind - Cantor Axiom → Theorem of Supremum

Proof: Theorem of Supremum → Dedekind - Cantor Axiom

Proof: Dedekind - Cantor Axiom → Theorem of Infimum

Proof: Theorem of Infimum → Dedekind - Cantor Axiom

# Proposition on Supremum and Infimum

上确界

  • 定义:设SS 是一个非空实数集,则b=supSb=\sup S 当且仅当
    • (1) xS,xb\forall x\in S, x\leq b;
    • (2) bub\leq u, uuSS 的任意上界.
  • 命题:设SS 是一个非空实数集,则b=supSb=\sup S 当且仅当
    • (1) xS,xb\forall x\in S, x\leq b;
    • (2') ε>0,xS,s.t.x>bε\forall \varepsilon>0, \exist x\in S, \mathrm{s.t.}\ x>b-\varepsilon.
Proof

下确界

  • 定义:设SS 是一个非空实数集,则l=infSl=\inf S 当且仅当
    • (1) xS,xl\forall x\in S, x\geq l;
    • (2) ldl\geq d, ddSS 的任意下界.
  • 命题:设SS 是一个非空实数集,则l=infSl=\inf S 当且仅当
    • (1) xS,xl\forall x\in S, x\geq l;
    • (2') ε>0,xS,s.t.x<l+ε\forall \varepsilon>0, \exist x\in S, \mathrm{s.t.}\ x<l+\varepsilon.
Proof

# Theorem of Limit of Monotone Sequence

# Bounded Monotone Sequence

  • 有界 (bounded) 序列:A sequence is bounded if the set of terms from the sequence is bounded.
  • 单调 (monotone) 序列:A sequence {xn:nN}R\{x_n:n\in\mathbb{N}\}\subseteq\mathbb{R} is
    • (1) increasing if xnxn+1,nNx_n\leq x_{n+1},\forall n\in\mathbb{N};
    • (2) decreasing if xnxn+1,nNx_n\geq x_{n+1},\forall n\in\mathbb{N};
    • (3) strictly increasing if xn>xn+1,nNx_n>x_{n+1},\forall n\in\mathbb{N};
    • (4) strictly decreasing if xn<xn+1,nNx_n<x_{n+1},\forall n\in\mathbb{N};
  • A sequence is monotone if it is either increasing of decreasing.

# Theorem on Limit of Bounded Monotone Sequence

  • Theorem: Every bounded monotone sequence in R\mathbb{R} has a limit in R\mathbb{R}.(单调有界数列必有极限)
    • Increasing Sequence: Suppose {xn:nN}\{x_n:n\in\mathbb{N}\} is an increasing sequence of real numbers which is bounded above. Then there exists a limit of {xn:nN}\{x_n:n\in\mathbb{N}\}, or limnxn\lim_{n \to \infty} x_n exists.
    • Decreasing Sequence: Suppose {xn:nN}\{x_n:n\in\mathbb{N}\} is a decreasing sequence of real numbers which is bounded below. Then there exists a limit of {xn:nN}\{x_n:n\in\mathbb{N}\}, or limnxn\lim_{n \to \infty} x_n exists.
Proof: Theorem of Limit of Increasing Sequence

Proof: Theorem of Limit of Decreasing Sequence

# Cantor Nested Intervals Theorem

  • Definition: {In=[dn,un]:nN}\{I_n=[d_n,u_n]:n\in\mathbb{N}\} is a sequence of closed bounded nested intervals(闭区间套)if I1I2InI_1\supseteq I_2\supseteq \dots \supseteq I_n\supseteq \dots.
  • 定理 1:若{In=[dn,un]:nN}\{I_n=[d_n,u_n]:n\in\mathbb{N}\} 是一个闭区间套,则存在一个实数D=sup{dn:nN}D=\sup\{d_n:n\in\mathbb{N}\},使得Dn=1InD\in\cap^{\infty}_{n=1}I_n.
  • 定理 2:若{In=[dn,un]:nN}\{I_n=[d_n,u_n]:n\in\mathbb{N}\} 是一个闭区间套,则存在一个实数U=inf{un:nN}U=\inf\{u_n:n\in\mathbb{N}\},使得Un=1InU\in\cap^{\infty}_{n=1}I_n.
  • 闭区间套定理:若{In=[dn,un]:nN}\{I_n=[d_n,u_n]:n\in\mathbb{N}\} 是一个闭区间套,则存在两个实数D=sup{dn:nN}D=\sup\{d_n:n\in\mathbb{N}\}U=inf{un:nN}U=\inf\{u_n:n\in\mathbb{N}\},使得[D,U]=n=1In[D,U]=\cap^{\infty}_{n=1}I_n.
  • 闭区间套定理:若{In=[dn,un]:nN}\{I_n=[d_n,u_n]:n\in\mathbb{N}\} 是一个闭区间套,且limnIn=limn(undn)=0\lim_{n \to \infty}|I_n|= \lim_{n \to \infty}(u_n-d_n)=0,则limndn=limnunn=1In\lim_{n \to \infty}d_n=\lim_{n \to \infty}u_n\in\cap^{\infty}_{n=1}I_n.
Proof: Theorem 1

Proof: Theorem 2

Proof: Nested Intervals Theorem


# Bolzano - Weierstrass Theorem

# Bolzano Theorem

  • Theorem: Each bounded sequence in R\mathbb{R} has a convergent subsequence.(有界数列必有收敛子列)
  • Theorem: Each bounded sequence in R\mathbb{R} has a limit point.(有界数列必有极限点)
Proof: Bolzano Theorem

# Weierstrass Theorem on Accumulation Point

  • Accumulation Point(聚点):For all ε>0\varepsilon>0, it exists infinite xnx_n such that xnx<ε|x_n-x|<\varepsilon, thus xx is an accumulation point of sequence {xn}\{x_n\}.
  • Theorem: Every bounded infinite set in R\mathbb{R} has an accumulation point.
Proof: Weierstrass Theorem


# Cauchy Convergence Criterion

  • 柯西序列 (Cauchy Sequence): {xn:nN}R\{x_n:n\in\mathbb{N}\}\subseteq\mathbb{R} 是一个柯西序列,当:ε>0,NN,s.t.xn1xn2<ε(n1>N,n2>N)\forall \varepsilon>0,\exists N\in\mathbb{N},\mathrm{s.t.}\ |x_{n_1}-x_{n_2}|<\varepsilon\ (n_1>N,n_2>N).
  • 柯西收敛准则:序列{xn:nN}R\{x_n:n\in\mathbb{N}\}\subseteq\mathbb{R} 是收敛 (convergent) 的当且仅当其为一个柯西序列。
Proof: Necessity

Proof: Sufficiency





# Heine - Borel Theorem

  • Definition: A collection H\mathcal{H} of open sets is an open covering(开覆盖) of a set SS if every point in SS is contained in a set HH belonging to H\mathcal{H}: that is, S{HH}S\subseteq\{H\in\mathcal{H}\}.
  • Theorem: If H\mathcal{H} is an open covering of a closed and bounded subset SS of the real line; then SS has an open covering H~\tilde{\mathcal{H}} consisting of finite many open sets belonging to H\mathcal{H}.
Proof


# Propositions of Continuous Funtion on Closed Interval

  • Theorem on Boundedness: If function ff is continuous on a bounded closed interval, then it is bounded.
    • Hint: Bolzano-Weierstrass Theorem
    • Hint: Heine-Borel Theorem on Finite Coverings
  • Theorem on Maximum and Minimum Values: If function ff is continuous on a bounded closed interval, then is has (reaches) maximum and minimum values.
    • Hint: Theorem of Supremum and Infimum + Bolzano-Weierstrass Theorem
  • Theorem on Solution: If function ff is continuous on a bounded closed interval [D,U][D,U], and f(D)f(U)<0f(D)f(U)<0, then there exists a solution on (D,U)(D,U) to equation f(x)=0f(x)=0.
    • Hint: Cantor Nested Intervals Theorem
  • Theorem on Inverse Function: If function y=f(x)y=f(x) is continuous and strictly monotonic increasing (or decreasing) on a bounded closed interval [D,U][D,U], and f(D)=Lf(D)=L and f(U)=Bf(U)=B, then there exists a continous and strictly monotonic increasing (or decreasing) inverse function x=g(y)x=g(y) on bounded closed interval [L,B][L,B] (or [B,L][B,L]).
  • Cantor Theorem on Uniform Continuity: If function ff is continuous on a bounded closed interval, then it is uniformly continuous.
    • Hint: Bolzano-Weierstrass Theorem
    • Hint: Heine-Borel Theorem on Finite Coverings

!! 参考证明见:陈继修等《数学分析(上册)》!!

# N-dimensional Real Number Space

  • Definition: NN-dimensional Euclidean space, or NN-dimensional continuum, is the set RN\mathbb{R}^N of all number tuple of NN real numbers.
    • RN={x=(x1,,xN):xnRforn=1,,N}.\mathbb{R}^N=\{x=(x_1,\cdots,x_N):x_n\in\mathbb{R}\ \mathrm{for}\ n=1,\cdots,N\}.

# Distance - Metric

  • For any two points xi=(x1i,,xNi)RNx^i=(x_1^i,\cdots,x_N^i)\in\mathbb{R}^N for i=1,2i=1,2, define distance between the two points:
    • ρ(x1,x2)={n=1N(xn1xn2)2}12=(x11x12)2++(xN1xN2)2\rho(x^1,x^2)=\left\{\sum^N_{n=1}(x_n^1-x_n^2)^2\right\}^{\frac{1}{2}}=\sqrt{(x_1^1-x_1^2)^2+\cdots+(x_N^1-x_N^2)^2}.

# Propositions of Distance

  • Positivity: ρ(x1,x2)0\rho(x^1,x^2)\geq 0. ρ(x1,x2)=0\rho(x^1,x^2)=0 if and only if x1=x2x^1=x^2.
  • Symmetry: ρ(x1,x2)=ρ(x2,x1)\rho(x^1,x^2)=\rho(x^2,x^1).
  • Triangle Inequality: ρ(x1,x3)ρ(x1,x2)+ρ(x2,x3)\rho(x^1,x^3)\leq \rho(x^1,x^2)+\rho(x^2,x^3).
    • ρ(x1,)\rho(x^1,\cdot) is a countinuous function on x2x^2: limρ(xn2,x2)0ρ(x1,xn2)=ρ(x1,x2)\lim_{\rho(x_n^2,x^2)\to 0}\rho(x^1,x_n^2)=\rho(x^1,x^2).

# Norm

  • For any two points xi=(x1i,,xNi)RNx^i=(x_1^i,\cdots,x_N^i)\in\mathbb{R}^N for i=1,2i=1,2, define the norm as:
    • x={n=1Nxn2}12=x12+xN2=ρ(x,0)\|x\|=\left\{\sum_{n=1}^Nx_n^2\right\}^{\frac{1}{2}}=\sqrt{x_1^2+\cdots x_N^2}=\rho(x,0).

# Propositions of Norm

  • Positivity: x0\|x\|\geq 0. x=0\|x\|=0 if and only if x=0x=0.
  • Symmetry: x=x\|x\|=\|-x\|.
  • Triangle Inequality: x1+x2x1+x2\|x^1+x^2\|\leq \|x^1\|+\|x^2\|.