思路来源于文武双全的大帝,向大帝 salute!对大帝为了学术牺牲爱情的高尚行为致敬!

# 原问题

For finite choice set XX, show that if there exists a choice function c()c(\cdot) which satisfies finitely non-emptiness and choice coherence, there exists a utility function u:XRu:X\rightarrow \mathbb{R} such that c(A)={xA:u(x)u(y),yA}c(A)=\{x\in A:u(x)\geq u(y),\forall y\in A\} for AX\forall A\subseteq X.

# 一般证法

# 大帝证法

精妙至极

For the choice function:

c():2X2X,c(\cdot): 2^X \rightarrow 2^X,

define

AC(xB)={A2Bxc(A)},AC(x | B)=\{A \in 2^B | x\in c(A)\},

which means that, after the correspondence of c()c(\cdot), all the elements in AC(xB)AC(x | B) (in fact the subsets of BB) are containing xx.

Lemma. AC(xB)2k1,k=B\left \| AC(x | B) \right \| \leq 2^{k-1},k=\left \| B \right \|

Proof: For xB\forall x \in B, the number of subsets containg xx is 2k12^{k-1}. Then for xB,A={C2BxC}\forall x \in B, A=\{C \in 2^B| x \in C\}, if xc(A),Ax \in c(A), \forall A, which means that for all subsets containing xx, xx is the chosen one. Thus the AC(xB)AC(x | B) is identical to the family of all the sets containing xx (they are all subsets of BB), AC(xB)=2k1.\left \| AC(x | B) \right \|=2^{k-1}. If xB,A,xc(A)\exists x'\in B, \exists A,x' \notin c(A), which means that there exists subsets containing xx', xx' is not the chosen one, so that AC(xB)<2k1.\left \| AC(x | B) \right \| < 2^{k-1}.

Then define the utility function u(x)u(x):

u(x)=AC(xA),forxA,c(A)={xAu(x)u(y),yA}u(x) = \left \| AC(x | A) \right \|, \text{for}\ \forall x \in A,\\ c(A) = \{x\in A | u(x) \geq u(y),\forall y \in A\}

Claim that

xc(A)AC(xA)AC(yA),foryA.x \in c(A) \Leftrightarrow \left \| AC(x | A) \right \| \geq \left \| AC(y | A) \right \|, \text{for}\ \forall y \in A.

Proof:

("\Rightarrow") Without loss of generality, assume A=k\left \| A \right \| = k. Then from the Lemma yA\forall y \in A, AC(yA)2k1\left \| AC(y | A) \right \| \leq 2^{k-1}.

Meanwhile, xc(A)x \in c(A) means that AC(xA)=2k1\left \| AC(x | A) \right \| = 2^{k-1}.

Thus AC(xA)AC(yA),foryA\left \| AC(x | A) \right \| \geq \left \| AC(y | A) \right \|, \text{for}\ \forall y \in A holds.

("\Leftarrow") S2A,S\forall S \in 2^A, S \neq \emptyset, from the finintely nonemptiness of the choice function, c(S)c(S) \neq \emptyset. Then c(A{x})c(A\setminus \{x\}) \neq \emptyset.

For yc(A{x})\forall y \in c(A\setminus\{x\}), if yc(A)y \notin c(A), by the finintely nonemptiness of the choice function, xc(A)x \in c(A); if yc(A)y \in c(A), by the choice coherence of the choice function, yy is the chosen one in all subsets of AA which are containg yy, AC(yA)=2k1\left \| AC(y | A) \right \|=2^{k-1}. We know that AC(xA)AC(yA),foryA\left \| AC(x | A) \right \| \geq \left \| AC(y | A) \right \|, \text{for}\ \forall y \in A, then AC(xA)=2k1\left \| AC(x | A) \right \| = 2^{k-1}, which means that xx is also the chosen one in all subsets of AA which are containg xx, thus xc(A)x \in c(A).

✔️三人行,必有我师焉。