# The Solow Model
# Models of Optimal Growth
# Finite periods Model - planner's problem
{ct,kt+1}t=0Tmaxt=0∑Tβtu(ct)s.t. ct+kt+1≤F(kt,l)+(1−δ)kt, t=0,…,Tct≥0, kt+1≥0, k0 is given.
# Infinite periods Model - planner's problem
{ct,kt+1}t=0∞maxt=0∑∞βtu(ct)s.t. ct+kt+1≤F(kt,l)+(1−δ)kt, t=0,1,2…ct≥0, kt+1≥0, k0 is given,t→∞limβtu′(ct)f′(kt)kt=0 (TVC).
# Recursive Analysis
V(kt)={ks+1}s=t∞maxs=t∑∞βs−1F(ks,ks+1)s.t. ks+1∈Γ(ks), ∀s≥t
The problem is equavalent with:
V(kt)=kt+1∈Γ(kt)max{F(kt,kt+1)+ks+1∈Γ(ks), ks+1∈Γ(ks), ∀s≥tmaxs=t+1∑∞βs−tF(ks+1,ks+2)}⇔V(kt)=kt+1∈Γ(kt)max{F(kt,kt+1)+βV(kt+1)}⇔V(k)=k′∈Γ(k)max{F(k,k′)+βV(k′)} (Bellman Equation)
and
k′∗=g(k)=k′∈Γ(k)argmax{F(k,k′)+βV(k′)}
# Competitive Equilibrium Models
# Endowment Economy Model
# Date-0 Trade Model
Definiton: A date-0 competitive equilibrium is a set of quantities {ct∗}t=0∞ and prices {pt}t=0∞ such that
- {ct∗}t=0∞ solves the household's problem:
{ct}t=0∞maxt=0∑∞βtu(ct)s.t. t=0∑∞ptct≤t=0∑∞ptwt, ct≥0,∀t
- In equilibrium: ct∗=wt, ∀t.
# Sequential Trade Model
Definition: A sequential competitive equilibrium is a set of sequence {ct∗,at+1∗}t=0∞ and rates {Rt}t=0∞ such that
- {ct∗,at+1∗}t=0∞ solves the household's problem:
{ct,at+1}t=0∞maxt=0∑∞βtu(ct)s.t. ct+at+1≤atRt+wt, ct≥0, ∀t, a0=0 is given,t→0lim(s=0∏tRs+1)−1at+1=0
- In equilibrium: ct∗=wt, at∗=0, ∀t.
# The Neoclassical Growth Model
# Date-0 Trade Model
Definiton: A date-0 competitive equilibrium is a set of quantities {ct∗,nt∗,kt+1∗}t=0∞ and prices {pt,rt,wt}t=0∞ such that
- {ct∗,nt∗,kt+1∗}t=0∞ solves the household's problem:
{ct,nt,kt+1}t=0∞maxt=0∑∞βtu(ct)s.t. t=0∑∞pt(ct+kt+1)≤t=0∑∞pt(rtkt+(1−δ)kt+wtnt), ct≥0,∀t, k0 is given
- {nt∗,kt∗}t=0∞ solves the firm's problem:
{nt,kt}t=0∞maxptF(kt,nt)−ptrtkt−ptwtnt
- Market clear: ct∗+kt+1∗=F(kt∗,nt∗)+(1−δ)kt∗, ∀t.
# Sequential Trade Model
Definiton: A sequential competitive equilibrium is a sequence {ct∗,nt∗,kt+1∗,Rt,wt}t=0∞ such that
- {ct∗,nt∗,kt+1∗}t=0∞ solves the household's problem:
{ct,nt,kt+1}t=0∞maxt=0∑∞βtu(ct)s.t. ct+kt+1≤Rtkt+wtnt, ct≥0, ∀t, k0 is given,t→0lim(t=0∏∞Rt+1)−1kt+1=0
- {nt∗,kt∗}t=0∞ solves the firm's problem:
{nt,kt}t=0∞maxF(kt,nt)−rtkt−wtnt
- Market clear: ct∗+kt+1∗=F(kt∗,nt∗)+(1−δ)kt∗, ∀t.
# N-Household Model
# Date-0 Trade Model
Definiton: A date-0 competitive equilibrium of the N-agent economy is a set of quantities {ct∗,nt∗,kt+1∗,{cti∗,nti∗,kt+1i∗}i=1N}t=0∞ and prices {pt,rt,wt}t=0∞ such that
- {cti∗,nti∗,kt+1i∗}t=0∞ solves the household i's problem for each i=1,…,N:
{cti,nti,kt+1i}t=0∞maxt=0∑∞βitu(cti)s.t. t=0∑∞pt(cti+kt+1i)≤t=0∑∞pt(rtkti+(1−δ)kti+wtnti), cti≥0 and 0≤nti≤lti,∀t, k0i is given
- {nt∗,kt∗}t=0∞ solves the firm's problem:
{nt,kt}t=0∞maxptF(kt,nt)−ptrtkt−ptwtnt
- Market clear:
- Aggregation: nt∗=∑t=1Nnti∗, kt∗=∑t=1Nkti∗, ct∗=∑t=1Ncti∗;
- ct∗+kt+1∗=F(kt∗,nt∗)+(1−δ)kt∗, ∀t.
# Government Debt and Tax Model
# The Neoclassical Recursive Model
Definition: A recursive competitive equlibrium is a set of functions: quantities G(kˉ),g(k,kˉ), value V(k,kˉ), prices R(kˉ),w(kˉ) such that
- V(k,kˉ) solves the household's problem, k′=g(k,kˉ) is the individual asscociated policy function:
V(k,kˉ)=c,k′max{u(c)+βV(k′,k′ˉ)}s.t. c+k′=R(kˉ)k+w(kˉ)lk′ˉ=G(kˉ)
- Prices are competitive determined:
- R(kˉ)=F1(kˉ,l)+1−δ;
- w(kˉ)=F2(kˉ,l).
- Individual decisions are consistent with aggregator:
- G(kˉ)=g(kˉ,kˉ), ∀kˉ.
# Two Agents Endowment Model
Definition: A recursive competitive equlibrium of the two agents endowment economy is a set of functions: quantities G(A1),g1(a1,A1),g2(a2,A1), value V1(a1,A1),V2(a2,A1), prices q(A1) such that
- Vi(ai,A1) solves the type i household's problem, ai′=gi(ai,A1) is the individual asscociated policy function, i=1,2:
Vi(ai,A1)=ci,ai′max{ui(ci)+βiVi(ai′,A1′)}s.t. ci+ai′q(A1)=ai+wiai′≥a, A1′=G(A1)
- Consistency: g1(A1,A1)=G(A1), g2(A1,A1)=−G(A1)
# Uncertainty and the Neoclassical Growth Model
# Planner's Problem
{ct(zt),kt+1(zt)}t=0∞maxt=0∑∞βtzt∈Zt+1∑π(zt)u(ctt)s.t. ct(zt)+kt+1(zt)≤ztF(kt(zt−1),1)+(1−δ)kt(zt−1), t=0,1,2…ct(zt)≥0, kt+1(zt)≥0, k0 is given
Assumption: {zt}t=0∞ is a first order Markov process, i.e. Prob{(zt+1,zt)∣zt}=Prob{(zt+1,zt)∣zt}.
V(k,z)=k′max{u(zf(k)−k′+(1−δ)k)+βz′∈Z∑π(z′∣z)V(k′,z′)}
and the associated policy function k′=g(k,z).
# Competitive Equilibrium under Uncertainty
# Date-0 Trade Model
Definition: Arrow-Debreu date-0 trading competitive equilibrium is a sequence {ct(zt),kt+1,lt(zt),pt(zt),rt(zt),wt(zt)}t=0∞ such that:
- {ct(zt),kt+1(zt),lt(zt)}t=0∞ solves household's problem:
{ct(zt),kt+1(zt),lt(zt)}t=0∞maxt=0∑∞zt∈Zt+1∑βtπ(zt)u(ct(zt),1−lt(zt))s.t. t=0∑∞zt∈Zt+1∑pt(zt)(ct(zt)+kt+1(zt))≤t=0∑∞zt∈Zt+1∑pt(zt)(rt(zt)kt(zt)+(1−δ)kt(zt−1)+wt(zt)lt(zt))ct(zt)≥0, kt+1(zt)≥0,∀t, k0 is given
- {lt(zt),kt(zt−1)}t=0∞ solves the firm's problem:
{lt(zt),kt(zt)}t=0∞maxztpt(zt)F(kt(zt),lt(zt))−pt(zt)rt(zt)kt(zt−1)−pt(zt)wt(zt)nt(zt)
- Market clear: ct(zt)+kt+1(zt)=ztF(kt(zt−1),lt(zt))+(1−δ)kt(zt−1), ∀t, ∀zt.
- No-arbitrage condition: pt(zt)=∑zt∈Zt+1pt+1(zt+1,zt)(rt(zt+1,zt)+1−δ).
# Sequential Trade Model
# General Equilibrium under Uncertainty
Assumptions:
- Random shock:
- z∈{z1,z2,…,zn};
- πj=Prob(z=zj);
- The expected value of z: zˉ=∑j=1nπjzj, i=1,2.
- Preference:
- Ui=ui(c0i)+β∑j=1nπjui(cji), i=1,2,
- u1(x)=x, u2(x) is strictly concave and limx→0u2′(x)=∞.
- That is, Agent 1 is risk neutral, Agent 2 is risk averse.
- Endowments:
- w0 consumption goods in period 0;
- 1 unit of labor in period 1.
- Technology (Production):
- yj=zjkα(2n)1−α, n=2.
- ⇒yj=zjkα
# Case 1: Two-type Agent, Two-period Setting
# Case 2: Two-type Agent, Multi-period Setting