# The Solow Model

# Models of Optimal Growth

# Finite periods Model - planner's problem

max{ct,kt+1}t=0Tt=0Tβtu(ct)s.t.ct+kt+1F(kt,l)+(1δ)kt,t=0,,Tct0,kt+10,k0is given.\max_{\{c_t,k_{t+1}\}_{t=0}^T} \sum_{t=0}^T \beta^t u(c_t) \\ \text{s.t. } c_t+k_{t+1} \leq F(k_t,l) + (1-\delta)k_t,\ t=0,\dots,T \\ c_t \geq 0,\ k_{t+1} \geq 0,\ k_0 \text{ is given}.

# Infinite periods Model - planner's problem

max{ct,kt+1}t=0t=0βtu(ct)s.t.ct+kt+1F(kt,l)+(1δ)kt,t=0,1,2ct0,kt+10,k0is given,limtβtu(ct)f(kt)kt=0(TVC).\max_{\{c_t,k_{t+1}\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t u(c_t) \\ \text{s.t. } c_t+k_{t+1} \leq F(k_t,l) + (1-\delta)k_t,\ t=0,1,2\dots \\ c_t \geq 0,\ k_{t+1} \geq 0,\ k_0 \text{ is given}, \\ \lim_{t\rightarrow\infty} \beta^t u'(c_t)f'(k_t)k_t = 0 \text{ (TVC)}.

# Recursive Analysis

V(kt)=max{ks+1}s=ts=tβs1F(ks,ks+1)s.t.ks+1Γ(ks),stV(k_t) = \max_{\{k_{s+1}\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \beta^{s-1} F(k_s,k_{s+1}) \\ \text{s.t. } k_{s+1} \in \Gamma(k_s),\ \forall s \geq t

The problem is equavalent with:

V(kt)=maxkt+1Γ(kt){F(kt,kt+1)+maxks+1Γ(ks),ks+1Γ(ks),sts=t+1βstF(ks+1,ks+2)}V(kt)=maxkt+1Γ(kt){F(kt,kt+1)+βV(kt+1)}V(k)=maxkΓ(k){F(k,k)+βV(k)}(Bellman Equation)V(k_t) = \max_{k_{t+1} \in \Gamma(k_t)} \left\{F(k_t,k_{t+1}) + \max_{k_{s+1} \in \Gamma(k_s),\ k_{s+1}\in \Gamma(k_s),\ \forall s \geq t} \sum_{s=t+1}^{\infty} \beta^{s-t} F(k_{s+1},k_{s+2})\right\} \\ \Leftrightarrow V(k_t) = \max_{k_{t+1} \in \Gamma(k_t)} \left\{F(k_t,k_{t+1}) + \beta V(k_{t+1})\right\} \\ \Leftrightarrow V(k) = \max_{k' \in \Gamma(k)} \left\{F(k,k') + \beta V(k')\right\} \text{ (Bellman Equation)}\\

and

k=g(k)=arg maxkΓ(k){F(k,k)+βV(k)}k'^{*} = g(k) = \argmax_{k'\in \Gamma(k)} \left\{F(k,k') + \beta V(k')\right\}

# Competitive Equilibrium Models

# Endowment Economy Model

# Date-0 Trade Model

Definiton: A date-0 competitive equilibrium is a set of quantities {ct}t=0\{c_t^*\}_{t=0}^{\infty} and prices {pt}t=0\{p_t\}_{t=0}^{\infty} such that

  • {ct}t=0\{c_t^*\}_{t=0}^{\infty} solves the household's problem:

max{ct}t=0t=0βtu(ct)s.t.t=0ptctt=0ptwt,ct0,t\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ \text{s.t. } \sum_{t=0}^{\infty}p_t c_t \leq \sum_{t=0}^{\infty} p_t w_t,\ c_t \geq 0, \forall t

  • In equilibrium: ct=wt,tc_t^* = w_t,\ \forall t.

# Sequential Trade Model

Definition: A sequential competitive equilibrium is a set of sequence {ct,at+1}t=0\{c_t^*,a_{t+1}^*\}_{t=0}^{\infty} and rates {Rt}t=0\{R_t\}_{t=0}^{\infty} such that

  • {ct,at+1}t=0\{c_t^*,a_{t+1}^*\}_{t=0}^{\infty} solves the household's problem:

max{ct,at+1}t=0t=0βtu(ct)s.t.ct+at+1atRt+wt,ct0,t,a0=0is given,limt0(s=0tRs+1)1at+1=0\max_{\{c_t,a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ \text{s.t. } c_t+a_{t+1} \leq a_t R_t + w_t,\ c_t \geq 0,\ \forall t,\ a_0 = 0\text{ is given,}\\ \lim_{t \rightarrow 0} \left(\prod_{s=0}^t R_{s+1}\right)^{-1} a_{t+1} = 0

  • In equilibrium: ct=wt,at=0,tc_t^* = w_t,\ a_t^* = 0,\ \forall t.

# The Neoclassical Growth Model

# Date-0 Trade Model

Definiton: A date-0 competitive equilibrium is a set of quantities {ct,nt,kt+1}t=0\{c_t^*,n_t^*,k_{t+1}^*\}_{t=0}^{\infty} and prices {pt,rt,wt}t=0\{p_t,r_t,w_t\}_{t=0}^{\infty} such that

  • {ct,nt,kt+1}t=0\{c_t^*,n_t^*,k_{t+1}^*\}_{t=0}^{\infty} solves the household's problem:

max{ct,nt,kt+1}t=0t=0βtu(ct)s.t.t=0pt(ct+kt+1)t=0pt(rtkt+(1δ)kt+wtnt),ct0,t,k0is given\max_{\{c_t,n_t,k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ \text{s.t. } \sum_{t=0}^{\infty}p_t (c_t + k_{t+1}) \leq \sum_{t=0}^{\infty} p_t (r_t k_t + (1-\delta) k_t + w_t n_t),\ c_t \geq 0, \forall t,\ k_0\text{ is given}

  • {nt,kt}t=0\{n_t^*,k_t^*\}_{t=0}^{\infty} solves the firm's problem:

max{nt,kt}t=0ptF(kt,nt)ptrtktptwtnt\max_{\{n_t,k_t\}_{t=0}^{\infty}} p_t F(k_t,n_t) - p_t r_t k_t - p_t w_t n_t

  • Market clear: ct+kt+1=F(kt,nt)+(1δ)kt,tc_t^* + k_{t+1}^*= F(k_t^*,n_t^*) + (1-\delta) k_t^*,\ \forall t.

# Sequential Trade Model

Definiton: A sequential competitive equilibrium is a sequence {ct,nt,kt+1,Rt,wt}t=0\{c_t^*,n_t^*,k_{t+1}^*,R_t,w_t\}_{t=0}^{\infty} such that

  • {ct,nt,kt+1}t=0\{c_t^*,n_t^*,k_{t+1}^*\}_{t=0}^{\infty} solves the household's problem:

max{ct,nt,kt+1}t=0t=0βtu(ct)s.t.ct+kt+1Rtkt+wtnt,ct0,t,k0is given,limt0(t=0Rt+1)1kt+1=0\max_{\{c_t,n_t,k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \\ \text{s.t. } c_t+k_{t+1} \leq R_t k_t + w_t n_t,\ c_t \geq 0,\ \forall t,\ k_0 \text{ is given,}\\ \lim_{t \rightarrow 0} \left(\prod_{t=0}^\infty R_{t+1}\right)^{-1} k_{t+1} = 0

  • {nt,kt}t=0\{n_t^*,k_t^*\}_{t=0}^{\infty} solves the firm's problem:

max{nt,kt}t=0F(kt,nt)rtktwtnt\max_{\{n_t,k_t\}_{t=0}^{\infty}} F(k_t,n_t) - r_t k_t - w_t n_t

  • Market clear: ct+kt+1=F(kt,nt)+(1δ)kt,tc_t^* + k_{t+1}^*= F(k_t^*,n_t^*) + (1-\delta) k_t^*,\ \forall t.

# N-Household Model

# Date-0 Trade Model

Definiton: A date-0 competitive equilibrium of the N-agent economy is a set of quantities {ct,nt,kt+1,{cti,nti,kt+1i}i=1N}t=0\{c_t^*,n_t^*,k_{t+1}^*,\{c_t^{i*},n_t^{i*},k_{t+1}^{i*}\}_{i=1}^N\}_{t=0}^{\infty} and prices {pt,rt,wt}t=0\{p_t,r_t,w_t\}_{t=0}^{\infty} such that

  • {cti,nti,kt+1i}t=0\{c_t^{i*},n_t^{i*},k_{t+1}^{i*}\}_{t=0}^{\infty} solves the household ii's problem for each i=1,,Ni = 1,\dots,N:

max{cti,nti,kt+1i}t=0t=0βitu(cti)s.t.t=0pt(cti+kt+1i)t=0pt(rtkti+(1δ)kti+wtnti),cti0and0ntilti,t,k0iis given\max_{\{c_t^{i},n_t^{i},k_{t+1}^{i}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t_{i} u(c_t^{i}) \\ \text{s.t. } \sum_{t=0}^{\infty}p_t (c_t^{i} + k_{t+1}^{i}) \leq \sum_{t=0}^{\infty} p_t (r_t k_t^{i} + (1-\delta) k_t^{i} + w_t n_t^{i}),\ c_t^{i} \geq 0 \text{ and } 0 \leq n_t^{i} \leq l_t^{i}, \forall t,\ k_0^{i}\text{ is given}

  • {nt,kt}t=0\{n_t^*,k_t^*\}_{t=0}^{\infty} solves the firm's problem:

max{nt,kt}t=0ptF(kt,nt)ptrtktptwtnt\max_{\{n_t,k_t\}_{t=0}^{\infty}} p_t F(k_t,n_t) - p_t r_t k_t - p_t w_t n_t

  • Market clear:
    • Aggregation: nt=t=1Nntin_t^* = \sum_{t=1}^N n_t^{i*}, kt=t=1Nktik_t^* = \sum_{t=1}^N k_t^{i*}, ct=t=1Nctic_t^* = \sum_{t=1}^N c_t^{i*};
    • ct+kt+1=F(kt,nt)+(1δ)kt,tc_t^* + k_{t+1}^*= F(k_t^*,n_t^*) + (1-\delta) k_t^*,\ \forall t.

# Government Debt and Tax Model

# The Neoclassical Recursive Model

Definition: A recursive competitive equlibrium is a set of functions: quantities G(kˉ),g(k,kˉ)G(\bar{k}),g(k,\bar{k}), value V(k,kˉ)V(k,\bar{k}), prices R(kˉ),w(kˉ)R(\bar{k}),w(\bar{k}) such that

  • V(k,kˉ)V(k,\bar{k}) solves the household's problem, k=g(k,kˉ)k' = g(k,\bar{k}) is the individual asscociated policy function:

V(k,kˉ)=maxc,k{u(c)+βV(k,kˉ)}s.t.c+k=R(kˉ)k+w(kˉ)lkˉ=G(kˉ)V(k,\bar{k}) = \max_{c,k'}\left\{ u(c) + \beta V(k',\bar{k'})\right\} \\ \text{s.t. } c + k' = R(\bar{k})k + w(\bar{k}) l\\ \bar{k'} = G(\bar{k})

  • Prices are competitive determined:
    • R(kˉ)=F1(kˉ,l)+1δR(\bar{k}) = F_1(\bar{k},l) + 1 - \delta;
    • w(kˉ)=F2(kˉ,l)w(\bar{k}) = F_2(\bar{k},l).
  • Individual decisions are consistent with aggregator:
    • G(kˉ)=g(kˉ,kˉ),kˉG(\bar{k}) = g(\bar{k},\bar{k}),\ \forall \bar{k}.

# Two Agents Endowment Model

Definition: A recursive competitive equlibrium of the two agents endowment economy is a set of functions: quantities G(A1),g1(a1,A1),g2(a2,A1)G(A_1), g_1(a_1,A_1), g_2(a_2,A_1), value V1(a1,A1),V2(a2,A1)V_1(a_1,A_1), V_2(a_2,A_1), prices q(A1)q(A_1) such that

  • Vi(ai,A1)V_i(a_i,A_1) solves the type ii household's problem, ai=gi(ai,A1)a_i' = g_i(a_i,A_1) is the individual asscociated policy function, i=1,2i=1,2:

Vi(ai,A1)=maxci,ai{ui(ci)+βiVi(ai,A1)}s.t.ci+aiq(A1)=ai+wiaia,A1=G(A1)V_i(a_i,A_1) = \max_{c_i,a_i'} \left\{u_i(c_i)+\beta_i V_i(a_i',A_1')\right\} \\ \text{s.t. } c_i + a_i' q(A_1) = a_i + w_i \\ a_i' \geq a,\ A_1' = G(A_1)

  • Consistency: g1(A1,A1)=G(A1)g_1(A_1,A_1) = G_(A_1), g2(A1,A1)=G(A1)g_2(A_1,A_1) = -G_(A_1)

# Uncertainty and the Neoclassical Growth Model

# Planner's Problem

max{ct(zt),kt+1(zt)}t=0t=0βtztZt+1π(zt)u(ctt)s.t.ct(zt)+kt+1(zt)ztF(kt(zt1),1)+(1δ)kt(zt1),t=0,1,2ct(zt)0,kt+1(zt)0,k0is given\max_{\{c_t(z^t),k_{t+1}(z^t)\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t \sum_{z^t \in Z^{t+1}} \pi(z^t) u(c_t^t) \\ \text{s.t. } c_t(z^t)+k_{t+1}(z^t) \leq z_t F(k_t(z^{t-1}),1) + (1-\delta)k_t(z^{t-1}),\ t=0,1,2\dots \\ c_t(z^t) \geq 0,\ k_{t+1}(z^{t}) \geq 0,\ k_0 \text{ is given}

# Recursive Formulation

Assumption: {zt}t=0\{z_t\}_{t=0}^\infty is a first order Markov process, i.e. Prob{(zt+1,zt)zt}=Prob{(zt+1,zt)zt}\text{Prob}\{(z_{t+1},z^t)|z^t\} = \text{Prob}\{(z_{t+1},z^t)|z_t\}.

V(k,z)=maxk{u(zf(k)k+(1δ)k)+βzZπ(zz)V(k,z)}V(k,z) = \max_{k'} \left\{u(z f(k) - k' + (1-\delta)k) + \beta \sum_{z'\in Z} \pi(z'|z) V(k',z')\right\}

and the associated policy function k=g(k,z)k' = g(k,z).

# Competitive Equilibrium under Uncertainty

# Date-0 Trade Model

Definition: Arrow-Debreu date-0 trading competitive equilibrium is a sequence {ct(zt),kt+1,lt(zt),pt(zt),rt(zt),wt(zt)}t=0\{c_t(z^t),k_{t+1},l_t(z^t),p_t(z^t),r_t(z^t),w_t(z^t)\}_{t=0}^\infty such that:

  • {ct(zt),kt+1(zt),lt(zt)}t=0\{c_t(z^t),k_{t+1}(z^t),l_t(z^t)\}_{t=0}^\infty solves household's problem:

max{ct(zt),kt+1(zt),lt(zt)}t=0t=0ztZt+1βtπ(zt)u(ct(zt),1lt(zt))s.t.t=0ztZt+1pt(zt)(ct(zt)+kt+1(zt))t=0ztZt+1pt(zt)(rt(zt)kt(zt)+(1δ)kt(zt1)+wt(zt)lt(zt))ct(zt)0,kt+1(zt)0,t,k0is given\max_{\{c_t(z^t),k_{t+1}(z^t),l_t(z^t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \sum_{z^t\in Z^{t+1}} \beta^t \pi(z^t) u(c_t(z^t),1-l_t(z^t)) \\ \text{s.t. } \sum_{t=0}^{\infty} \sum_{z^t\in Z^{t+1}} p_t(z^t) (c_t(z^t) + k_{t+1}(z^t)) \leq \sum_{t=0}^{\infty} \sum_{z^t\in Z^{t+1}} p_t(z^t) (r_t(z^t) k_t(z^t) + (1-\delta) k_t(z^{t-1}) + w_t(z^t) l_t(z^t))\\ c_t(z^t) \geq 0,\ k_{t+1}(z^{t}) \geq 0, \forall t,\ k_0\text{ is given}

  • {lt(zt),kt(zt1)}t=0\{l_t(z^t),k_t(z^{t-1})\}_{t=0}^{\infty} solves the firm's problem:

max{lt(zt),kt(zt)}t=0ztpt(zt)F(kt(zt),lt(zt))pt(zt)rt(zt)kt(zt1)pt(zt)wt(zt)nt(zt)\max_{\{l_t(z^t),k_t(z^t)\}_{t=0}^{\infty}} z^t p_t(z^t) F(k_t(z^t),l_t(z^t)) - p_t(z^t) r_t(z^t) k_t(z^{t-1}) - p_t(z^t) w_t(z^t) n_t(z^t)

  • Market clear: ct(zt)+kt+1(zt)=ztF(kt(zt1),lt(zt))+(1δ)kt(zt1),t,ztc_t(z^t) + k_{t+1}(z^{t})= z_t F(k_t(z^{t-1}),l_t(z^t)) + (1-\delta) k_t(z^{t-1}),\ \forall t,\ \forall z^t.
  • No-arbitrage condition: pt(zt)=ztZt+1pt+1(zt+1,zt)(rt(zt+1,zt)+1δ)p_t(z^t) = \sum_{z^t\in Z^{t+1}} p_{t+1}(z_{t+1},z^t)(r_t(z_{t+1},z^t)+1-\delta).

# Sequential Trade Model

# General Equilibrium under Uncertainty

Assumptions:

  • Random shock:
    • z{z1,z2,,zn}z \in \{z_1,z_2,\dots,z_n\};
    • πj=Prob(z=zj)\pi_j = \text{Prob}(z = z_j);
    • The expected value of zz: zˉ=j=1nπjzj,i=1,2\bar{z} = \sum_{j=1}^n \pi_j z_j,\ i=1,2.
  • Preference:
    • Ui=ui(c0i)+βj=1nπjui(cji),i=1,2U_i = u_i(c_0^i) + \beta \sum_{j=1}^n \pi_j u_i(c_j^i),\ i=1,2,
      • u1(x)=xu_1(x) = x, u2(x)u_2(x) is strictly concave and limx0u2(x)=\lim_{x\rightarrow 0}u_2'(x) = \infty.
        • That is, Agent 1 is risk neutral, Agent 2 is risk averse.
  • Endowments:
    • w0w_0 consumption goods in period 0;
    • 11 unit of labor in period 1.
  • Technology (Production):
    • yj=zjkα(n2)1α,n=2y_j = z_j k^\alpha (\frac{n}{2})^{1-\alpha},\ n=2.
    • yj=zjkα\Rightarrow y_j = z_j k^\alpha

# Case 1: Two-type Agent, Two-period Setting

# Case 2: Two-type Agent, Multi-period Setting